宇宙学调查实验中的数据处理和分析管道引入了数据扰动,可以显着降低基于深度学习的模型的性能。鉴于加工和分析宇宙学调查数据的监督深度学习方法的增加,数据扰动效应的评估以及增加模型稳健性的方法的发展越来越重要。在星系形态分类的背景下,我们研究了扰动在成像数据中的影响。特别是,我们在基线数据培训和扰动数据测试时检查使用神经网络的后果。我们考虑与两个主要来源相关的扰动:1)通过泊松噪声和2)诸如图像压缩或望远镜误差的图像压缩或望远粉误差所产生的步骤所产生的数据处理噪声提高了观测噪声。我们还测试了域适应技术在减轻扰动驱动误差时的功效。我们使用分类准确性,潜在空间可视化和潜在空间距离来评估模型稳健性。如果没有域适应,我们发现处理像素级别错误容易将分类翻转成一个不正确的类,并且更高的观察噪声使得模型在低噪声数据上培训无法对Galaxy形态进行分类。另一方面,我们表明,具有域适应的培训改善了模型稳健性并减轻了这些扰动的影响,以更高的观测噪声的数据提高了23%的分类精度。域适应也增加了基线与错误分类的错误分类的潜在空间距离〜2.3的倍数距离,使模型更强大地扰动。
translated by 谷歌翻译
在科学和气象观点来看,具有潜在的健康和安全危害,如火山地区,难以访问或挑战区域的覆盖范围。该地区内容包含的地区通常提供不同重视的有价值信息。我们提出了一种算法,可以用无人驾驶飞行器(UAV)在Hawai`i中最佳地覆盖火山区域。目标区域被分配,具有不均匀的覆盖范围分配。对于UAV的指定电池容量,优化问题会寻求最大化总覆盖范围和累计重要评分的路径,同时惩罚同一区域的重新审视。基于可用的电源和覆盖信息图,轨迹是为无人机而离线生成的。最佳轨迹最小化未注册的电池电量,同时执行UAV返回其起始位置。通过使用顺序二次编程来解决这种多目标优化问题。讨论了竞争优化问题的细节以及分析和仿真结果,以证明所提出的算法的适用性。
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
In recent years several learning approaches to point goal navigation in previously unseen environments have been proposed. They vary in the representations of the environments, problem decomposition, and experimental evaluation. In this work, we compare the state-of-the-art Deep Reinforcement Learning based approaches with Partially Observable Markov Decision Process (POMDP) formulation of the point goal navigation problem. We adapt the (POMDP) sub-goal framework proposed by [1] and modify the component that estimates frontier properties by using partial semantic maps of indoor scenes built from images' semantic segmentation. In addition to the well-known completeness of the model-based approach, we demonstrate that it is robust and efficient in that it leverages informative, learned properties of the frontiers compared to an optimistic frontier-based planner. We also demonstrate its data efficiency compared to the end-to-end deep reinforcement learning approaches. We compare our results against an optimistic planner, ANS and DD-PPO on Matterport3D dataset using the Habitat Simulator. We show comparable, though slightly worse performance than the SOTA DD-PPO approach, yet with far fewer data.
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
Convolutional neural networks (CNNs) are currently among the most widely-used neural networks available and achieve state-of-the-art performance for many problems. While originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted how CNNs, like other deep learning models, are sensitive to noise injection which can jeopardise their performance. This paper quantifies the numerical uncertainty of the floating point arithmetic inaccuracies of the inference stage of DeepGOPlus, a CNN that predicts protein function, in order to determine its numerical stability. In addition, this paper investigates the possibility to use reduced-precision floating point formats for DeepGOPlus inference to reduce memory consumption and latency. This is achieved with Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the main deliverable of the DeepGOPlus model that will be used across environments and therefore most likely be subjected to the most amount of noise. Furthermore, studies have shown that the inference stage is the part of the model which is most disposed to being scaled down in terms of reduced precision. All in all, it has been found that the numerical uncertainty of the DeepGOPlus CNN is very low at its current numerical precision format, but the model cannot currently be reduced to a lower precision that might render it more lightweight.
translated by 谷歌翻译
With water quality management processes, identifying and interpreting relationships between features, such as location and weather variable tuples, and water quality variables, such as levels of bacteria, is key to gaining insights and identifying areas where interventions should be made. There is a need for a search process to identify the locations and types of phenomena that are influencing water quality and a need to explain why the quality is being affected and which factors are most relevant. This paper addresses both of these issues through the development of a process for collecting data for features that represent a variety of variables over a spatial region, which are used for training and inference, and analysing the performance of the features using the model and Shapley values. Shapley values originated in cooperative game theory and can be used to aid in the interpretation of machine learning results. Evaluations are performed using several machine learning algorithms and water quality data from the Dublin Grand Canal basin.
translated by 谷歌翻译
Oxidation states are the charges of atoms after their ionic approximation of their bonds, which have been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition based oxidation state prediction still remains elusive so far, which is more important in new material discovery for which the structures are not even available. This work proposes a novel deep learning based BERT transformer language model BERTOS for predicting the oxidation states of all elements of inorganic compounds given only their chemical composition. Our model achieves 96.82\% accuracy for all-element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61\% accuracy for oxide materials. We also demonstrate how it can be used to conduct large-scale screening of hypothetical material compositions for materials discovery.
translated by 谷歌翻译
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
translated by 谷歌翻译